Distributive congruence lattices of congruence-permutable algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributive Congruence Lattices of Congruence-permutable Algebras

We prove that every distributive algebraic lattice with at most א1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The א1 bound is optimal, as we find a distributive algebraic lattice D with א2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence n...

متن کامل

Congruence Lattices of Congruence Semidistributive Algebras

Nearly twenty years ago, two of the authors wrote a paper on congruence lattices of semilattices [9]. The problem of finding a really useful characterization of congruence lattices of finite semilattices seemed too hard for us, so we went on to other things. Thus when Steve Seif asked one of us at the October 1990 meeting of the AMS in Amherst what we had learned in the meantime, the answer was...

متن کامل

A NOTE ON CONGRUENCE LATTICES OF DISTRIBUTIVE p–ALGEBRAS

A (distributive) p-algebra is an algebra 〈L;∨,∧, ∗, 0, 1〉 whose reduct 〈L;∨,∧, 0, 1〉 is a bounded (distributive) lattice and whose unary operation ∗ is characterized by x ≤ a if and only if a ∧ x = 0. If L is a p-algebra, B(L) = { x ∈ L : x = x } and D(L) = { x ∈ L : x = 1 } then 〈B(L);∪,∧, 0, 1〉 is a Boolean algebra when a ∪ b is defined to be (a∗ ∧ b∗)∗, for any a, b ∈ B(L), D∗(L) = { x ∨ x∗ ...

متن کامل

Congruence Lattices of P - Algebras

T. Katri n ak proved the following theorem: Every nite distributive lattice is the congruence lattice of a nite p-algebra. We provide a short proof, and a generalization, of this result.

متن کامل

Principal and Syntactic Congruences in Congruence-distributive and Congruence-permutable Varieties

We give a new proof that a finitely generated congruence-distributive variety has finitely determined syntactic congruences (or equivalently, term finite principal congruences), and show that the same does not hold for finitely generated congruence-permutable varieties, even under the additional assumption that the variety is residually very finite. 2000 Mathematics subject classification: 08B10.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2006.11.005